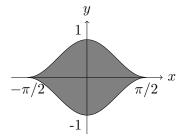
解答I微分積分

問 1

- (1) $x \ge 0$ のとき, $f(x) = (2x)^{\alpha}$ で,x < 0のとき,f(x) = 0である。f(x)が $x \ne 0$ で C^1 級であることは,これより明らかである。一方, $\lim_{x\to 0+} f(x) = 0 = \lim_{x\to 0-} f(x)$ であるので,f(x)はx = 0でも連続である。次に,f(x)の導関数を計算すると, $f'(x) = 2\alpha(2x)^{\alpha-1}$ (x > 0),および f'(0) = 0 (x < 0) であり,x = 0 では, $\lim_{x\to 0+} \frac{f(x)}{x} = (2x)^{\alpha}/x = 0 = \lim_{x\to 0-} \frac{f(x)}{x}$ より, $f'(0) = \lim_{x\to 0} \frac{f(x)-f(0)}{x} = \lim_{x\to 0} \frac{f(x)}{x} = 0$ である。これより,f'(x)が $x \in \mathbf{R}$ で連続であることが従う。よって,f(x)は \mathbf{R} 上で C^1 級である。
- (2) x < 0 のとき,x + |x| = 0 なので, $((x,y) \in D, x < 0) \Leftrightarrow (-2 \le x < 0, -1 \le y \le 1)$ となり,これは辺の長さ 2 の正方形を表す。よって,x < 0 における D の面積は 4 である。一方, $x \ge 0$ のとき,x + |x| = 2x なので, $((x,y) \in D, x \ge 0) \Leftrightarrow (x^2 + y^2 \le 1, x \ge 0)$ となり,これは半径 1 の半円を表す。よって, $x \ge 0$ における D の面積は $\pi/2$ である。これより,D の面積は $4 + \pi/2$ である。
- (3) マクローリン級数 $\cos(x)=1-x^2/2+x^4/24-\cdots$,および $\sin(x)=x-x^3/6+\cdots$ を使用 すると,x>0 において, $\cos(\sqrt{x})-1+\sin(x/2)=1-x/2+x^2/24+\cdots-1+x/2-x^3/48+\cdots=x^2/24+\cdots$ である。一方, $\sin(x^2)=x^2-\cdots$ なので, $\lim_{x\to 0+}\frac{\cos(\sqrt{x})-1+\sin(x/2)}{\sin(x^2)}=\frac{1}{24}$ が従う。

問 2

(1) Dの概形は次のようになる(境界は含まない)。



- (2) $(x,y)\in D$ のとき,y<1, $\cos x\neq 0$ なので, $\frac{1}{y-2}$ と $\frac{1}{\cos x}$ はともに D 上で連続である。 よって,g(x,y) も D 上で連続である。
- (3) 自然数 n に対し, $D_n = D \cap \{(x,y): |x| < \pi/2 1/n\}$ とおく。 $\frac{x^2y^2}{\cos^6 x}$ は有界閉集合 $\overline{D_n}$ 上で連続かつ有界である。よって, D_n 上の重積分が存在し,

$$\iint_{D_n} \frac{x^2 y^2}{\cos^6 x} \, dx dy = 4 \int_0^{\pi/2 - 1/n} \frac{x^2}{\cos^6 x} \left(\int_0^{\cos^2 x} y^2 \, dy \right) \, dx
= 4 \int_0^{\pi/2 - 1/n} \frac{x^2}{\cos^6 x} \left[\frac{y^3}{3} \right]_0^{\cos^2 x} \, dx = 4 \int_0^{\pi/2 - 1/n} \frac{x^2}{\cos^6 x} \frac{\cos^6 x}{3} \, dx
= \frac{4}{3} \int_0^{\pi/2 - 1/n} x^2 \, dx = \frac{4}{9} \left(\frac{\pi}{2} - \frac{1}{n} \right)^3.$$

ここで、極限 $n \to \infty$ をとると、次のように D 上の広義積分が存在しその値が求まる。

$$\int_{D} \frac{x^{2}y^{2}}{\cos^{6} x} \ dx \ dy = \lim_{n \to \infty} \iint_{D_{n}} \frac{x^{2}y^{2}}{\cos^{6} x} \ dx dy = \frac{\pi^{3}}{18}.$$

解答 II 線形代数

問1

- (1) 真:(証明) $v=c_1e_1+\cdots+c_me_m=d_1e_1+\cdots+d_me_m$ と書けたとすると、 $(c_1-d_1)e_1+\cdots+(c_m-d_m)e_m=0$ となるので、1 次独立性より、 $c_1-d_1=c_2-d_2=\cdots=c_m-d_m=0$ となる。(証明終)
- (2) 偽: O_2 , I_2 を,それぞれ,2次の零行列および単位行列とする。例えば, $A=I_2$, $B=-I_2$ とおくと, $\det(I_2+(-I_2))=\det(O_2)=0\neq 2=\det(I_2)+\det(-I_2)$ より,反例が得られる。
- (3) 偽: 例えば

$$f\begin{pmatrix}1\\0\end{pmatrix} + f\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}3\\2\end{pmatrix} + \begin{pmatrix}1\\-1\end{pmatrix} \neq \begin{pmatrix}4\\0\end{pmatrix} = f\begin{pmatrix}1\\1\end{pmatrix}$$

となるので、f は線形写像ではない。

(4) 真:(証明) 背理法による。A は $n \times n$ の正則行列で,固有値 0 を持つと仮定する。このとき,その固有ベクトルとなる実 n 次元列ベクトル v (\neq 0) が存在し,Av = 0v = 0 である。(ただし 0 はすべての成分が 0 の n 次元列ベクトル。) 両辺に左から A^{-1} をかけると, $v = A^{-1}0 = 0$ となり矛盾する。よって仮定は誤りである。(証明終)

問 2

- (1) 固有値は、1,-2,3 である。
- (2) それぞれの固有値に対応する固有ベクトルとして,例えば, $\begin{pmatrix} 1\\2\\-1 \end{pmatrix}$, $\begin{pmatrix} -1\\1\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$ がとれる。そこで,これらを正規化したベクトルを並べて,

$$P = \begin{pmatrix} 1/\sqrt{6} & -1/\sqrt{3} & 1/\sqrt{2} \\ 2/\sqrt{6} & 1/\sqrt{3} & 0 \\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

とすれば、P は直交行列で、

$$P^{-1}AP = \begin{pmatrix} 1 & & \\ & -2 & \\ & & 3 \end{pmatrix}$$

を満たす。

解答 III 力学

問1運動エネルギーは

$$T = \frac{1}{2}m(|\dot{\boldsymbol{r}}_{\mathrm{A}}|^2 + |\dot{\boldsymbol{r}}_{\mathrm{B}}|^2)$$

とかける。

間 2 ポテンシャルエネルギーは

$$V = \frac{1}{2}k(|\boldsymbol{r}_{\mathrm{B}} - \boldsymbol{r}_{\mathrm{A}}| - \ell)^{2}$$

とかける

問
$$3\mathbf{R} = \frac{1}{2}(\mathbf{r}_{\mathrm{A}} + \mathbf{r}_{\mathrm{B}}), \mathbf{r} = \mathbf{r}_{\mathrm{B}} - \mathbf{r}_{\mathrm{A}}$$
 より、

$$egin{array}{lll} oldsymbol{r}_{
m A} &=& oldsymbol{R}-rac{1}{2}oldsymbol{r}, \ oldsymbol{r}_{
m B} &=& oldsymbol{R}+rac{1}{2}oldsymbol{r} \end{array}$$

が得られる。

問4問3の答を,問1と問2の答に代入して,

$$L = m|\dot{\mathbf{R}}|^2 + \frac{1}{4}m|\dot{\mathbf{r}}|^2 - \frac{1}{2}k(|\mathbf{r}| - \ell)^2$$

が得られる。

問5問4で得られたラグランジアンをオイラー・ラグランジュ方程式に代入して計算すると,

$$m\ddot{R} = 0,$$

$$\frac{1}{2}m\ddot{r} = -k(r-\ell)$$

が得られる。

問 $6x = r - \ell$ とおくと,

$$\frac{1}{2}m\ddot{x} = -kx$$

なので, $x=A\cos\sqrt{\frac{2k}{m}}t+B\sin\sqrt{\frac{2k}{m}}t$ とかける。初期条件より,A=0, $B=v_0\sqrt{\frac{m}{2k}}$ が得られるので,

$$r = v_0 \sqrt{\frac{m}{2k}} \sin \sqrt{\frac{2k}{m}} t + \ell$$

となる。

解答 IV 電磁気学

問 1 導体平板 A に蓄えられた電荷を Q, B に蓄えられた電荷を -Q とすると、ガウスの法則よ り,コンデンサー間の電場の大きさ $E_0=rac{V}{d}=rac{Q}{arepsilon_0 S}$ である。電気容量を C とすると,Q=CVより, $C = \frac{\varepsilon_0 S}{I}$.

問
$$2$$
 コンデンサーに蓄えられるエネルギーは $\frac{CV^2}{2} = \frac{\varepsilon_0 SV^2}{2d}$.

問
$$3$$
 導体平板を固定するために必要な力の大きさは $rac{QE_0}{2}=rac{arepsilon_0 SV^2}{2d^2}$.

問 4 誘電体内部の電場の大きさ
$$E$$
 は, $E_0 - \alpha E = E$ より, E_0 の $\frac{1}{1+\alpha}$ 倍。

問
$$5$$
 A 側の誘電体表面に表われる分極電荷を σ とすると, $E=\frac{Q+\sigma}{\varepsilon_0 S}$ より,

$$\sigma = -\frac{\alpha Q}{1+\alpha} = -\frac{\alpha \varepsilon_0 SV}{d(1+\alpha)}.$$

目
$$\alpha$$
 $a(1+\alpha)$ 問 $a(1+\alpha)$ 問 $a(1+\alpha)$ に 可能 $a(1+\alpha)$ に で $a(1+\alpha)$ に $a(1+\alpha)$

$$Q = C'V'$$
 より, $C' = \frac{\varepsilon_0(1+\alpha)S}{\ell + (1+\alpha)(d-\ell)}$.

問 7 問 4 より,導体平板を固定するために必要な力の大きさは
$$\frac{QE_0}{2(1+\alpha)}=\frac{\varepsilon_0 SV^2}{2d^2(1+\alpha)}$$
.

解答V プログラミング

解答例として、Fortran によるプログラムの例を挙げる。

```
integer x,p,np
double precision r
np=1000000
p=0
do j=1,np
x=0
do i=1,10
r=random()
if(r.lt.0.5) then
 x=x+1
else
 x=x-1
endif
enddo
if(x.eq.0) p=p+1
enddo
write(*,*)'P=',dble(p)/dble(np)
end
```